Nature of the collapse transition in interacting self-avoiding trails
نویسندگان
چکیده
منابع مشابه
Nature of the collapse transition in interacting self-avoiding trails.
We study the interacting self-avoiding trail (ISAT) model on a Bethe lattice of general coordination q and on a Husimi lattice built with squares and coordination q=4. The exact grand-canonical solutions of the model are obtained, considering that up to K monomers can be placed on a site and associating a weight ω_{i} with an i-fold visited site. Very rich phase diagrams are found with nonpolym...
متن کاملCollapse transition of self-avoiding trails on the square lattice
The collapse transition of an isolated polymer has been modelled by many different approaches, including lattice models based on self-avoiding walks and self-avoiding trails. In two dimensions, previous simulations of kinetic growth trails, which map to a particular temperature of interacting self-avoiding trails, showed markedly different behaviour for what was argued to be the collapse transi...
متن کاملFour-dimensional polymer collapse II: Interacting self-avoiding trails
We have simulated four-dimensional interacting self-avoiding trails (ISAT) on the hypercubic lattice with standard interactions at a wide range of temperatures up to length 4096 and at some temperatures up to length 16384. The results confirm the earlier prediction (using data from a non-standard model at a single temperature) of a collapse phase transition occurring at finite temperature. More...
متن کاملSemi-flexible interacting self-avoiding trails on the square lattice
Self-avoiding walks self-interacting via nearest neighbours (ISAW) and self-avoiding trails interacting via multiply-visited sites (ISAT) are two models of the polymer collapse transition of a polymer in a dilute solution. On the square lattice it has been established numerically that the collapse transition of each model lies in a different universality class. It has been shown that by adding ...
متن کاملPseudo-first-order transition in interacting self-avoiding walks and trails
The coil–globule transition of an isolated polymer has been well established to be a second-order phase transition described by a standard tri-critical O(0) field theory. We present Monte Carlo simulations of interacting self-avoiding walks and interacting self-avoiding trails in four dimensions which provide compelling evidence that the approach to this (tri)critical point is dominated by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2016
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.93.012502